Skip to content
🤔prompts chat🧠
🔍
question:Calculate the period and frequency of a pendulum with a length of 3.550 m at a location where the acceleration due to gravity is 9.795 m/s^2.

answer:To find the period: {eq}T=2*Pi*sqrt{frac{l}{g}} T=2*Pi*sqrt{frac{3.550 m}{9.795 frac{m}{s^2}}} T=3.772 s {/eq} To find the frequency: {eq}f=frac{1}{T} f=frac{1}{3.772 s} f=0.265 Hz {/eq}

question:Multiply the scalar -frac{2}{3} and the matrix left( begin{array}{ccc} 6 & 0 & -3 -9 & 12 & 0 end{array} right).

answer:begin{array}{l} begin{array}{l} text{Simplify the following}: -frac{2}{3}left( begin{array}{ccc} 6 & 0 & -3 -9 & 12 & 0 end{array} right) end{array} hline begin{array}{l} -frac{2}{3}left( begin{array}{ccc} 6 & 0 & -3 -9 & 12 & 0 end{array} right)=frac{-2left( begin{array}{ccc} 6 & 0 & -3 -9 & 12 & 0 end{array} right)}{3}: frac{-2left( begin{array}{ccc} 6 & 0 & -3 -9 & 12 & 0 end{array} right)}{3} end{array} begin{array}{l} -2left( begin{array}{ccc} 6 & 0 & -3 -9 & 12 & 0 end{array} right)=left( begin{array}{ccc} -2times 6 & -2times 0 & -2 (-3) -2 (-9) & -2times 12 & -2times 0 end{array} right): frac{fbox{left( begin{array}{ccc} -2times 6 & -2times 0 & -2 (-3) -2 (-9) & -2times 12 & -2times 0 end{array} right)}}{3} end{array} begin{array}{l} 6 (-2) text{= }-12: frac{1}{3}left( begin{array}{ccc} fbox{-12} & -2times 0 & -2 (-3) -2 (-9) & -2times 12 & -2times 0 end{array} right) end{array} begin{array}{l} -2times 0 text{= }0: frac{1}{3}left( begin{array}{ccc} -12 & fbox{0} & -2 (-3) -2 (-9) & -2times 12 & -2times 0 end{array} right) end{array} begin{array}{l} -2 (-3) text{= }6: frac{1}{3}left( begin{array}{ccc} -12 & 0 & fbox{6} -2 (-9) & -2times 12 & -2times 0 end{array} right) end{array} begin{array}{l} -2 (-9) text{= }18: frac{1}{3}left( begin{array}{ccc} -12 & 0 & 6 fbox{18} & -2times 12 & -2times 0 end{array} right) end{array} begin{array}{l} -2times 12 text{= }-24: frac{1}{3}left( begin{array}{ccc} -12 & 0 & 6 18 & fbox{-24} & -2times 0 end{array} right) end{array} begin{array}{l} -2times 0 text{= }0: frac{1}{3}left( begin{array}{ccc

question:Differentiate the function ( f(x) = sqrt{frac{15x^4}{2} - frac{7}{2}} + log(-6x) ).

answer:The derivative of the function ( f(x) ) with respect to ( x ) is: [ f'(x) = frac{d}{dx}left(sqrt{frac{15x^4}{2} - frac{7}{2}}right) + frac{d}{dx}(log(-6x)) ] Differentiate each term: [ f'(x) = frac{15x^3}{2sqrt{frac{15x^4}{2} - frac{7}{2}}} + frac{1}{-6x} cdot (-6) ] Simplify: [ f'(x) = frac{15x^3}{sqrt{15x^4 - 7}} + frac{1}{x} ] This derivative is correct and represents the rate of change of the original function with respect to ( x ).

question:In the business world, what is recognized as a legally acceptable means for a company to protect its proprietary production methods from competitors?

answer:Trade secret. A trade secret is a confidential formula, process, or other business information that provides a company with a competitive advantage. It is legally protected, allowing businesses to keep their unique methods of production or innovation secret, thereby preventing competitors from replicating these techniques.

Released under the MIT License.

has loaded