Skip to content
🤔prompts chat🧠
🔍
question:Find the second derivative of the following function: f(x) = e^{3 x+8}

answer:The first derivative of f(x) is: f'(x) = frac{d}{dx} e^{3 x+8} = 3 e^{3 x+8} The second derivative of f(x) is: f''(x) = frac{d}{dx} f'(x) = frac{d}{dx} (3 e^{3 x+8}) = 9 e^{3 x+8} The answer is f''(x) = 27 e^{3 x+8}

question:A triangle has side lengths of 9, 12, and 18. Determine if this triangle is a right triangle using the Pythagorean theorem.

answer:No, it is not a right triangle. According to the Pythagorean theorem, if 9^2 + 12^2 = 18^2, then the triangle is a right triangle. However, 81 + 144 = 225, which does not equal 18^2 (324). Therefore, the triangle is not a right triangle.

question:Multiply the scalar -frac{1}{10} with the given matrix: left( begin{array}{ccc} -3 & 4 & 1 10 & 8 & 3 -7 & 3 & 8 10 & -6 & 8 end{array} right) Find the resulting matrix.

answer:To multiply a scalar by a matrix, you multiply each element of the matrix by the scalar. Doing this for -frac{1}{10} and the given matrix, we get: left( begin{array}{ccc} -3 cdot left(-frac{1}{10}right) & 4 cdot left(-frac{1}{10}right) & 1 cdot left(-frac{1}{10}right) 10 cdot left(-frac{1}{10}right) & 8 cdot left(-frac{1}{10}right) & 3 cdot left(-frac{1}{10}right) -7 cdot left(-frac{1}{10}right) & 3 cdot left(-frac{1}{10}right) & 8 cdot left(-frac{1}{10}right) 10 cdot left(-frac{1}{10}right) & -6 cdot left(-frac{1}{10}right) & 8 cdot left(-frac{1}{10}right) end{array} right) Simplifying each element: left( begin{array}{ccc} frac{3}{10} & -frac{2}{5} & -frac{1}{10} -1 & -frac{4}{5} & -frac{3}{10} frac{7}{10} & -frac{3}{10} & -frac{4}{5} -1 & frac{3}{5} & -frac{4}{5} end{array} right) So the resulting matrix is: left( begin{array}{ccc} frac{3}{10} & -frac{2}{5} & -frac{1}{10} -1 & -frac{4}{5} & -frac{3}{10} frac{7}{10} & -frac{3}{10} & -frac{4}{5} -1 & frac{3}{5} & -frac{4}{5} end{array} right)

question:Let W be a finite dimensional complex vector space and V and U be subspaces of W with V = mathbb C e oplus mathbb C h and U = mathbb C f oplus mathbb C h, for some e,f,h in W. Then what is V oplus U ? In my book it is written as V oplus U = mathbb C e_1 oplus mathbb C h_1 oplus mathbb C e_2 oplus mathbb C h_2. What are e_1, e_2, h_1 and h_2 ?

answer:In the external direct sum Voplus U, e_1, e_2, h_1, h_2 are respectively the copies of ein V,fin U,hin V,hin U. More formally, with the notations of the document: e_1=i_+(e),quad h_1=i_+(h),quad e_2=i_-(f),quad h_2=i_-(h).

Released under the MIT License.

has loaded